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Abstract

~— This paper describes systolic algorithms for a number of gcometric problems. Implementations yielding
maximal throughput are given for solving dynamic versions of convex hull, inclusion, range and inverse range
search, planar point location, interscction, triangulation, and closcst-point problems,
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1 Introduction

The pervasive influcnce of VLSI in the computer science community has given rescarch on paraliel
computation its second wind. In contrast with the traditional conception of parallel systems, where several
computers arc each assigned complicated tasks, VLSI computation. especially of systolic nature, involves the
simultancous use of a great number of very simple proccssors [MC,K].

As commonly referred to, systolic arrays are one- or two-dimensional arrangements of simple cells locaily
connected [K.K1,KL,L}!. The cssential features of systolic cells are their simplicity, regularity, and modularity.
Performance-wise, these characteristics are definite assets, as they cnsurc high levels of pipelining and
multiprocessing, hence providing massive parallelism. They also affect the cconomics of the approach by
making circuit development more cost-effective. Indeed, with dropping costs of electronic components and
increasing levels of circuit integration, systems designers are facing the prospect of putting hundreds of
thousands of gates on a single chip, which so far constitutes a formidable challenge. Systolic architectures are
one answer to this challenge. Their modularity permits the designer to decompose the system’s afhitecmre
into building blocks which can be used repetitively with simple interfaces.

From the origin, the epithet systolic has been reserved to special-purpose devices. such as multipliers,
priority queues, pattern-matchers, etc... With this perspective, systolic arrays were built with wired-in cell
implementations, which was not to be a handicap as long as the overall reconfigurability of the array, an
essential feature of a systolic architecture, was preserved. Thus the user was essentially given the freedom to
tailor the array to the size of his problem. without having the possibility of modifying the cell definition. If
one wishes. however, to optimize the ccll specifications or 1o allow a more versatile usc of the systolic device,
it is essential that the cell behavior be made programmable (D]. By doing so, it becomes possible to
experiment with different systolic implementations of a same scheme without having to build different chips
and be caught in the bottleneck of fabrication turnaround. Also, programming the array allows the user to
make it f'ulﬁn not just one function, but a whole range of related tasks. The merit of this approach partly
resides in the combination versatility & high-performance which it affords. It must also be mentioned that it

- serves pedagogical purposcs by putting systolic dcsign into the hands of the laymen, thus making the
conception and use of very high performance devices more accessible.

The purpose of this work is to present a class-related systolic processor based on the approach just

SR P

described. This processor is a programmable systolic array aimed for solving a wide class of geometric
problems in a highly unifying manner. This class of problems contains many of the most basic questions of

Lhe best general exposition of systolic architectures can be found in [K1}
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computational geometry. Among others. we will find dynamic versions of convex hull, inclusion. range and
inverse range scarch. planar point location. intersection, triangulation, and closest-point problems. Whenever
possible, we will insist on the dynamic aspect of the problem, for it is often where systolic solutions are at their
best. On the other hand, many applications arcas involve problems of an inhcrently dynamic nature, with
which we must cope. For example, air traffic control necessitates the real-time solution of closest-point
problems on an ever-changing set of points.

After discussing the advantages of systolic architectures in terms of increased adaptability and cost-
effectiveness, we should investigate the gains in performance to cxpect from a systolic treatment of
computational geometry. To begin with, let us roughly describe our systolic architecture. We consider only
one-dimensional arrays, i.e., arrays with a single string of cells. each connccted to their one or two neighbors.
Furthermore, communications with the outside world (typically, a host computer) takes place solely at either
of the end-cells. It resuits from this configuration that although there may be full parallclism in the arrays, the
number of 1/0 operations at any time is always bounded by a constant. We do not make this assumption for
the sake of simplicity, but for the sake of realism. Indeed, in most applications, the systolic device will receive
its data from a sequential computer, therefore the assumption we are making is not a choice but an inevitable
reality.

Being now ready to turn our attention to performance considerations. we immediately derive, from the
assumption above, that N picces of data cannot be processed in fewer than N systolic steps. This may scem
like a serious handicap, when compared to the O(N?) or O(Nlog N) running times typically offered by
sequential gcometric algorithms. One may hope at best the gain of a factor N or log N: however, asymptotic
figures based on big-Oh considerations are not too relevant in the matter, Indeed, the sole performance goal
in our case is to maximize the throughput, i.c., have the systolic array keep up as closely as possible with the
hosv/device data rate. This data rate is dependent on the pin bandwidth of the chip. or sometimes in real-time
applications, on the rate at which data is made available to the host by the outside (e.g., radar, scnsor). Note
that the new emphasis made here reflects yet another departure from the traditional study of computational
complexity.

It is often the case that a circuit will receive streams of data, each of them pertaining to a different instance
of the problem. In this case, maximizing the throughput is called pipelining, and to measure the adequacy of
the circuit to respond to a stream of requests, we look at its period, a concept introduced in [VU]. Roughly,
the period of a circuit is the minimum dclay between two consccutive scts of inputs. Of course, it is highly
desirablc that our systolic designs have period O(1). which often involves preventing the occurrence of
clusters or of the presence of cells waiting for others in order to compicte execution. We will discuss these
issucs in detail later on.
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In the next section, we describe the gencral features of the geometric systolic array. then proceed with a
detailed description of the algorithms in the remaining scctions. Because of the intricacy of some of these
algorithms, we have chosen to keep the descriptions at a fairly intuitive Ievel, relegating the detils of the
implementations as well as the proofs of correctness to the Appendix.

Boundary Generic Boundary
ca €T > Cell

N —r— S

Figure 1: The one-dimensional systolic array.

____1____
____1__-_

2 The geometric systolic chip

Most of the systolic arrays which we will describe in this paper have the basic outlook of fig.1. Interaction
with the outside world takes place solely at the end cells, called boundary cells. All of the other cells, called
generic. are alike, and aithough boundary cells are assigned additional tasks for /0 purposcs, they usuaily
don't differ drastically from the generic cells. Each cell contains a small amount of memory, in the form of a
few registers. We distinguish two kinds of registers:

1. Working registers for either storing data (point, edge, angle....) or for providing temporary storage
for the computations.

2. 170 registers for communicating data between adjacent cells.

To avoid dealing with implementation details at this point (we will take up thesc issucs in the appendix), we

registers arc protected by gates which can be cither open or locked according to the current clock phase. We
assume that the whole systolic array is synchronous, and that cach cell operates in lock-step. For simplicity, we
also assume the existence of two clocks @, and ¢, beating in opposition. This allows us to scparate input and
output stages casily by requiring that input (resp. output) gates should all be open (resp. locked) at P, and
vice versa at @, (fig.2). The lapse of time between two phases p, is called a sysiolic cycle. 1t is to be
distinguished from the clock cycle internal to cach ccll, which is likcly to be much shorter, Indecd, a systolic

’’’’’’’’’’’’’

may regard 170 registers as being conceptually "located” on the conncction wircs between the cells. These:
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cycle must correspond at least to a number of intcrnal clock cycles necessary for a cell to complcte the
execution of its stored program. We should observe that this clocking arrangement is not unique; systolic
arrays with asynchronous and/or adjacent cells operating in opposite cycles are perfectly feasible, so the
choice made here serves only explanatory purposes, wiog.

X1 Xy
0] vy Lt Y5 i+l
/ | Til | F | Write-Out

o, Cdll cel l Cell Ly
. i+
Y Y

Figure 2: Handling critical paths.

The only bit of notation, used throughout, that needs be introduced herc concerns the representation of
points by capital lewers, AM.X...., with 3, denoting the ith coordinate of point A in a Cantesian system of
coordinates,

3 Convex hull problems

Estimating a population parameter in statistics, or simulating chemical reactions often require computing
the convex hull of a sct of points in a dynamic fashion [S). In the former case, one wishes to strip away the
convex hull of the set of points to remove the outliers of the sample, then remove the convex hull of the
remainder, and iterate on this process until only (1-2a)N points remain (N and a are respectively the size of
the sample and a chosen trimming factor). This leads to the definition of the depth of a point as the number of
convex hulls that have to be stripped from the sample until the point is removed. For static and dynamic
solutions to convex hull problems on a conventional machine, sce {S.P1,LEJ,OV].

To fulfil! gar purposes, we will devisc a systolic structurc which supports the following opcrationsz.
1. Insert/dclete point M.

2. Find and report all the vertices of the convex hull in clockwise or counterclockwise order.

zlhmughout this scetion, we will assume the dimension of the space 1o be 2.
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. 3. Determine whether an arbitrary point M lics inside or outside the convex hull. ]
E As usual with dynamic convex hull routines, deletions and inscrtions proceed in very different ways. To 5
. cope with this problem, we will describe two systolic arrays, CH1 and CH2, supporting the following ?
E opcrations. -]
L Armay CH1 3
h , 1. Inserv/delete point M. ':
X ]
;;'., 2. Report all vertices of convex hull (in arbitrary order). .

P 3. Determine whether point M lies inside or outside the convex hull. 5
. r‘
:‘ Array CH2 4

1. Insert point M.

2. Report all vertices of convex hull in clockwise (or counterclockwise) order.

3. Determine whether point M lies inside or outside the convex hull.

We observe that in order to support the operations listed at the beginning, it suffices to connect CH1 and
CH2 together.

S X RS AN
. . .

3.1 The array CH1

CH1 consists of N cells, so as to handle up to N points at any given time. each cell storing one point. All
operations (updates and queries) are initiated at the input cell with the answers emanating from the output

cell (fig.3).
1

| | :
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3 N Figure 3: The ovcrall structurc of the array CH1. )
“ p
F- Implementing Opcration 1 is straightforward. Points to be inserted arc pumped into the left cell, and travel ~
3
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from left to right stopping at the first vacant cell. A point to be deleted is input in the same way, moving from
left to right until it encounters the cell where its copy is stored. which it then marks as vacant. Note that the
array does not keep track of the order of the vertices around the convex hull. Operation 3 relics on the
following gecometric property.

Lemma 1: Let M(),....MN.1 be a list of N points in the order induced by an angular sweep
around a point M. This point lies inside the convex hull of M...My, if and only if no angle of
the form (MMM, N [mod NJ exceeds 180 degrees.

Proof: A consequence of the fact that a point lies outside the convex hull iff there exists a line
containing it. with al] the points on one side of the convex hull. O

F(A.M,B) = FCMJB)

_ T:  unchanged
FBMA) = RCMA)
FAMB) = FCMB)
T €— MCH)
F(BM,A) ¥ HCM.A)
KAM,B) # HCM.B)
T €— MAO
RBMA) = RCMA)
(o]
FAMB) ¢ RCMB)
M is inside
hull
M FBMA) 2 FCMA) comvex
A B.

Figure 4 Testing inclusion in the convex huill.

Lemma 1 shows that we simply have to make the query point M travel from Icft to right. maintaining the
value of the largest angle (MiMMi . l) encountered so far. This is donc by a trivial casc analysis. illustrated in
fig.4. To alleviatc the notation, we define F(M,A.B) as the sign of the expression um, +vm,+w. where
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uX+vY+w=0 is an cquation of thc line passing through A and B3, This provides us with an casy
characterizatdon of whether two points M,P lic on the same side of AB, i.c., they do iff F(M,A.B)=F(P,A,B).
For simplicity, we will always assume that no three points are cver collinear®. Let T=(M.A.B) be the triplet
of points yielding the largest angle so far. M will wravel along with this piece of information, which must be
tested against each new point encountered, then updated before procecding to another cell. Testing T against
a new point C leads to the operations chcﬁbcd in fig4.

The handling of Operation 3 should be clear by now, so can proceed with Operation 2. One solution would
be, in a first stage, to output copies of all the points, then in a second stage, re-input them one after the other,
while exccuting Operation 3. To achieve the same result /n place, we can view the systolic array as a strip of
paper. The idea is then to pick it up at the input cell end and fold it over, pulling the input cell over from left
to right (fig.5).

Py

Figure 5; The fold-over operation.

To ensure that each cell will indecd look at ail the others, we must update both the covering cclls moving
right and the covered cells not yet in motion. The updating is of the same nature as in Opcration 3. Note that
the left end of the folded strip will move twice as slowly as the input ccll. For this reason, no operation on the
systolic array should be initiated within N systolic cycles after the start of Operation 2. This will ensure that no
query will ever propagate to a cell alrcady engaged in a computation for a previous query. To implement this

3Wc:haveus -b,,v=b,-a, W =3,b,—2,b,.
b B 1~ 1°2"4%%

4Rchxing this requirement involves adding only a few simpie, unintercsting details to the algorithms, so it is legitimaie to allow such
simplifications.
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Jold-over operation, we need essentially two signals: one is the query itsclf. which follows the right-end of the
covering strip. The other follows the other end. and is neccssary to signal the cell that at the cycle following
the next. it will have to send a copy of itsclf to the right, thus becoming the current left front of the covering
strip. See Appendix for details.

3.2 The array CH2

This structure supports only insertions, but in return, it provides an ordered description of the convex hull,
at any time. Also, since the array stores only the vertices of the convex hull, it can support an arbitrary
number of insecrtions, as long as this convex hull always kecps a number of vertices on the order of N. To
begin with, let us give the gecometric background behind the algorithm. Assume that MO,...,MP_1 are the
vertices of a convex p-gon P, given in clockwise order. Let M be an arbitrary point outside P, and let Q denote
the convex hull of Pu{M}. Considering the infinite line passing through an cdge e of P, it is casy to see that
adding M to the convex hull will cause the disappearance of e if and only if the linc lies between M and
P. This motivates the introduction of the function G, defined by the refation:

G(M.A,B) = (a,~b,)m, +(b, —a,)m,+a,b, - a,b,
Note that F(M,A,B) = sign G(M,A,B). The following result is simply a more formal statement of the remark
above, and we leave out the proof - see illustration in fig.6. Once again. in the following, we shall assume that
no three points may be collinear.

Domain { X | G(XM.Mv)<0}

AN

Figure 6: Computing convex hulls in clockwisc order.
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Lemma 2 Let M,,....M_, be the vertices of a convex p-gon P, in clockwise order. Let M be an
arbitrary point and Q denote the convex huil of PU{M}.

1. M lies inside P iff G(M.M_ M, 1)<0. for all i; 0gigp—1fmod p].

2 MM, _, is an edge of Q iff GIMM. M, 0. Also. if M docs not lie inside P, it is a vertex
of Q and its adjacent vertices are, in clockwise order, M, and M, defined uniquely
by GM ;.M MX0, G(M, ;.M MKO0, G(M ;.MM K0.and G(M, _ ;.M.M X0.

u-i’ u+l’ v+ 1’

The array CH2 has the same overall structure as CH1 (fig.3). Instcad of a point, cach cell now stores an
edge of the convex hull, however, and the left-to-right order in the array corresponds to a clockwise traversal
of the boundary of the convex hull. Opcration 1 (inserting point Af) causcs M 1o travel from the input cell to
the output cell, computing the function G defined above in order to determine whether M lies inside the
convex hull, If it lies outside, two edges have to be added to the structure, and in gencral, a bunch of
consccutive edges (at least one, anyhow) must be removed. More precisely. assume that MiMi +1....,MJ._le

are the consecutive edges of P to be removed. Upon encountering M.M. _ .. M must causc the ccll currently

i ikl
visited to substitute MM for MiMi o1 All the subsequent cells will delete their contents, until M encounters
the first edge (Mij + 1) not to be affected by the insertion of M. At this point, the current cell must hand the
cell MjMJ. +1 to its right-hand side neighbor. and kecp the edge MMJ. in store. M has now ccased to cause
changes in the array, and it can terminate its motion. However, there is now one cell in the array with two
edges. To repair this anomaly, we make sure that the cell keeps its additional edge but forward its former
contents to its right neighbor. This only causes to shift the anomaly one cell to the right, but itcrating on this
process will eventually cause the last non-vacant cell to release an edge to its neighbor, which solves the
problem. This phenomenon is known as rippling, as it mimics the propagation of a wave in water. We should
obscrve that if the last non-vacant cell has no right neighbor, overflow must be rcporied. However, the
inscrtion may have just cause the deletion of a number of edges. in which case reporting overflow is

undesirable. In general, we pose as a requirement that no overflow should be reported if there is any vacant cell
in the array, no matter where. To comply with this rule, we must cnsure that vacant cells which have edges on
their right-hand side, i.e., holes, must be filled by edges from the right. To do so. it suffices to have cach cell
always check whether its left hand-side neighbor is vacant, in which case it must pass its contents to it. As a
result, it appears that, in gencral, two opposite motions wiil take place within the array: one, to the right,
corresponds to querics and inscrtions, while the other, leftwards, is mcant to fill the holes just created.
Operation 2 simply involves pumping out all the cdges of the array through the input cell. thus preserving the

»
ey
-
o
—

(counterclockwisc) order of the edges. Operation 3 is a simple application of Lemma 2, similar to Operation 1,
yet without altering the state of the array. The query point M travels left-to-right, checking its location with
respect to each cdge in turn. If M is always found to lic on the same side of the edge as the interior of the

polygon, inclusion must be reported, otherwise M lics outside the convex hull. Sce Appendix for details.
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4 Inclusion, Intersection, and Closest-point problems

n We next show that many of the .most common geometric problems can be solved by meuns of a simple

unifying scheme. The underlying idea, already used in arithmetic or pattern matching [K.FK,KL}, exploits
the inhereat suitability of systolic designs to testing each input data against the contents of cach cell, in a
pipeline fashion.

More precisely. let 51"“'SN be the data stored in the array, and let @)yl denote a list of querics in the
order with which they arrive at the input cell: the goal is to compute for cuch query a, the value of TK(N’.
defined by the recurrence refation: T, = 0,

Tk(i) =F (Tk(i.n‘si'ak)

k
- 5 P s P s
—— 1 —————— i —————— N |
70
k
X ——» X
m out
S,
1
ym —-’ym

X €&——— X

out in

y, €<— Fly, .8 ,x.)

Figure 7: A systolic scheme for iterative problems.

Figure 7 sketches a systolic solution for this class of problems. As we will sce, it is possible, in most cases, to

make the systolic scheme dynamic, that is, capable of handling updates in the array. If no order among the S's
is required, a delete (e} opcration simply results in marking the ccll storing e vacant, whilc insers (€) causes the
storing of ein the first cell vacant from the left. If on the other hand. some order is to be preserved among the

S."s. an insert operation will involve scarching for the appropriate (non-necessarily vacant) cell, and store the
new clement in it, thus possibly causing the remaining cells to ripple to the right. Symmetrically. deleting an
clement will incur the creation of a hole and the start of a Ieftward motion aimed at filling it. rcsulting in the

propagation of the hole to the right end of the array.
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For a list of applications areas where the geometric problems addressed next arise in practice, Shamos’
thesis [S] is the first source to turn to.

4.1 Inclusion problems
1) Poiat / Polygon
Does point M lie in polygon P = M p... M2

The polygon is taken to be simple’, but no convexity assumptions are made. It is possible to achicve unit
period with the following systolic scheme. The register S, holds the pair MM, > where the list M,,...My;
corresponds to a clockwise traversal of the boundary of P. The variables x and y of fig.7 are respectively the
point M and the pair (uv,u’v’), where uv and u'v’ are the edges of P with u.v (resp. u’,v’) giving the clockwise
direction, such that their intersection with the vertical line L passing through M forms the smallest segment so
far containing M (fig.8). Testing for the inclusion of point M involves pumping M throughout the array, from
left 1o right, updating the pair of edges in y on the fly. |

A

>

z » D »
a) | b) c)

Figure 8: Testing inclusion.
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SA poiygon is simple if no pair of non-adjacent edges intersect
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Lety,, = (AA'BB’), with D, = LNAA’and Dy = LNBB".
LetD = MM, ,NL
ifDliesonD,D
thea A“B
ifMliesonD AD
then y  —~(AA'MM, )
else you —(BB'MM,
else
ym"'yh

Xout™"%in

IfD, (resp. Dp) is undefined, it can be set to + infinity (resp. — infinity), for convenience.

Eventually, the array can output an mclunon message if Yout falls into casc b) of fig.8. or a non-inclusion
signal if it falls into case c). This is a simple application of the Jordan Curve Theorem, stating that a closed
curve in the plane divides the plane into two pans: the inside and the outside. Note that the scheme used
above is far from unique, and other tests for inclusion may lead to equally simple systolic structures. For
example, simply counting the number of intersections with the line L above and below M is sufficient, since
these numbers are even iff M lies inside the polygon.

2) Planar point location
Given a planar graph with f&cesf,.....f" and a point M, determine the face where M Jies.

For this problem, several sequential algorithms with an optimal O(log N) query time exist {S,LT,P2], but
for the most part, require complicated preprocessing. Instead. we can design a very simple systolic array to
solve this problem with unit period. To do so, we simply represent the graph by placing in the array, next to
each other. clockwise descriptions of the faces. Since in this way, cach cdge is represcented exactly twice, and
since the total number of edges of a planar graph does not exceed the number of faces, up to within a constant
factor. no more than a linear number of cclls will be required. We can now view the graph as a union of
polygons, represented in the array by consecutive sublists of edges. Locating a query point M comes down to
testing the point for inclusion with respect to cach polygon in turn, as previously described. finally concluding
- with a report of the name of the unique polygon which contains M.
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3) Range search

In one dimension, the problem consists of computing the number of segments containing a query
point, given a set of N collinear segments. In two dimensions, the goal is lo report the number of
rectangles containing a query point, given a set of N iso-rectangles (sides parallel to the X-Y-axes)
[BW.BO,NP.EM].

The systolic array will simply store one segment (resp. rectangle) in each cell. so that the query point can
scan the array left-to-right. checking for inclusion in the segment (resp. rectangle) stored in cach cell, and
updating the partial count. Note that the problem can be extended to arbitrary polygons instead of only
iso-rectangles.

- D TN
Y PRI
P DRI

4) Inverse range search

Given a set of segments (resp. rectangles), and given a query segment (or a query rectangle), report
the number of segments (resp. rectangles) that intersect the query object [BW,BO,NP.EM].

Once again, testing pairwise intersection requires constant time, which ensures unit period. The algorithm
is straightforward and needs no further development.

The last two problems arise constantly in graphics [NS], and in design-rule checking for VLSI circuits
(BO,BW1]. Often. however. instead of a mere number of intersections. an explicit report of all the intersecting
pairs is desired. To give our systolic arrays this added capability, it is sufficient to add only a few instructions
to the algorithms. One solution is to prescribe that upon encountering an intersection. a query first scnds the
intersecting pair forward to the next cell, then only proceeds in the same dircction. Of course, this will cause a
slowdown, therefore to prevent overtaking by subsequent queries, we require that before moving an object to
the next cell, the algorithm first check the vacancy of that cell. To that end, each cell must keep sending vacant
or occupied signals to its left hand-side neighbor. The scheme i's somewhat similar to the traffic management
described for CH2, so we refer to the appendix for details. We should observe that with the actual reporting
of intersecting pairs, the array still yiclds maximal throughput. since the output flow is always kept at its

maximum. The concept of period, based on input rate, becomes meaningless, however, since a glut due to
intense output activity may cause a sliowdown in the input rate. "ﬂ

4.2 Intersection problems

For scquential algorithms, sce [S,SH,BW,BO,NP).

. E

5) Interscction of polygons —1
Given two polygons P.Q, determine whether they intersect. :

]

If we wish to determine only if the boundaries intersect, we may simply store the edges of P in the systolic o
array, and have those of Q travel left-to-right, testing cach cdge cncountered for intersection. It is casy to "1
{

i

{
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extend the mcthod and solve the general problem by observing that P and Q intersect if and only if at least
one of the following conditions is satisfied:

1. A vertex of P lies in Q.
2. A vertex of Q Lies in P.
3. The boundaries of P and Q intersect.
Thus it suffices to add to each cell two copies of the procedure described for Problem 1); one with respect
to P, the other with respect to Q. Note that cach cell must check whether the passing edge is the last edge of

Q, in which case, it must tag a yes or no signal t© the tail of Q to acknowledge if cither cndpoint of the cdge
stored in the cell lies inside Q or not. This is straightforward, and details are left to the attention of the reader.

6) Intersection of half-planes

Given N half-planes H ,...H '\ COmpute their intersection.

This problem requires 2(Nlog N) time on a conventional machine [S.SH.B). As usual, we expect our ;
systolic implementation to yield maximal throughput, and thus display an overall O(N) time performance. !
Moreover, as we will see, it is easy to provide the array with the capability of handling queries and updates,
without losing on the overall performance. This addition is very similar to the connection of CH1 and CH2
described earlier for the solution of dynamic convex hull problems. Actually, the similarity between the two
problems is very deep, for it stems from the geometric duality which exists between convex hulls and
interscctions of half-spaces {B,PM].

Let I be the intersection of the N half-planes Hr'“'HN' If I is not empty, it is a convex polygon with
possibly one open side, i.e., two edges that are half-lines meeting at infinity5. It is possible to represent I
either by a list of the lines supporting the cdges of [, in arbitrary order, or if we wish more information, by a
list . of edges (A.B), as they appear in a clockwise traversal of the boundary. In case of an open polygon I, we
require that the vertex at infinity should appear at the ends of the list. For example, wc may have two points
1,1, in the list

with the understanding that the cdge ll."\l (resp. A, I,) is the infinite ray starting at A (resp. A,) and passing
through IIA1 (resp. Aklk)'

PO S PSS

sNom. for the sake of complctencss. that the interscction [ may afso be rcduecd {0 a single half-plane or an infinitc paralle! strip.
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Similarly to CH1 and CIH2. we will design two systolic arrays INT1 and INT2 to support the following
operations: :
Array INT1
1. Insert/dclete half-plane H.

2. Report all lincs on the boundary of I, in arbitrary order.

3. Determine whether point M lies in L.

Aray INT2
1. Insert half-plane H.

2. Report all vertices of 1 in clockwise (or counterclockwise) order.

3. Determine whether point M lies in L.

Because of the similarity with CH1 and CH2, we may only sketch the algorithms. Any standard
representation of half-planes is adequate. For example, (u.v.w,2) can be used to denote the haif-plane

uX +vY +w20.

The only point to investigate about INT1 is, in Operation 2, the type of matching involved in the "fold-
over” process. To begin with, it is easy to see that a haif-planc H; contributes an edge to [ iff its supporting
line L, lies in the intersection of the N-1 remaining half-planes H,....H_ H; ,...Hy. Then since the
intersection of L, with the interscction of any subset of Hr....HN is, if not empty, a segment, a half-line, or l..l
itself, it can be expressed by means of at most two points, which can then be updated as L, is matched against
each l-lj in wrn. All of the other features of INT1 are similar to those of CH1. As for INT2, we assume that,
at all times, the array contains a clockwise description of I, with each edge stored in a separate cell. Once
again, all the opcrations are handled as in CH2, including the holc-filling process; only the case analysis for
Opcration 1, the center-piece of the algorithm, needs to be detailed, which is done in the appendix.

4.3 Clon.st-point problems
7) Nearest-neighbor

Given N pointis. M penB s and a query point M, determine the nearest neighbor of M - see
[S.BSW,BWY].
For this problem, we allow the dimension of the space to be arbitrary and the distance to be bascd on any

of the Ll. LZL " norms’. Whereas cfficient solutions on a conventional machine involve the use of fancy

7Reall that the Lp-nonn of a vector (xl...x d) in a Fuclidean d-space is {|x l|p +..+x dl"]U P

1.
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data structures (e.g.. Voronoi diagrams. planar point location search trees, k-d irees. eic...) entailing substantial

implementation overhead. a simple dynamic systolic scheme can be devised as follows:

Once again, we store one point per ccll. Querics travel left-to-right, determining their nearest neighbor on
the fly. To do so, each query is accompanicd by the the closest point found so far. Updates in the structure
are handled as in CHI, that is, inscrting a point into the first available cell encountered, and deleting it by
simply marking the corresponding cell vacant. If desired. a report-all- nearest-neighbors query can be added to
the set of allowed operations. This instruction, which causcs the nearest ncighbor of cach point in the array to
be outpdt. can be implemented by the fold-over procedure of CH1. See Appendix for details.

Applications areas where a device for reporting near-neighbors would be of great intcrest are many. Air
traffic control is one cxample: in this situation, typically, a few radars transmit streams of signals giving
updates on the position of near-by airplanes, and minimum safety distances betwcen planes must be
constantly ensured. To speed up the signaling of anomalous positions, an emergency output port can be
reserved on each cell, with direct link to the host. Although slightly unsystolic, this feature is totally feasible as
long as emergency reports remain rare events.

8) Euclidcan minimum spanning tree
Given N points in the plane, construct a tree of minimum total length whose vertices are the given
points S},

C. Savage. in [SA], proposes a systolic structure for computing the connccted components of a graph. This
stucture is a one-dimensional systolic array, which can be connected to Leiserson’s priority qucue [L], so as to
compute the minimum spanning tree in linear time.

9) Triangulation
Partition the convex hull of N points M pnMy, into triangles, using only segments between the
points.

This problem, which ariscs froquently ' in numecrical analysis (finite element method, numerical
interpolations, etc...), has an @(Nlog N) lower bound on a scquential machine [S). A onc-dimensional systolic
scheme can yet achieve linear time, while supporting the following features.
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Armav TRI

1. Insert a point in the triangulation.
2. Determine in which face of the triangulation a query point lies.

3. Report all the triangles of the triangulation by giving, for each. a clockwise order list of its vertices.

The array TRI computes an arbitrary triangulation, without any consideration of "goodness”. Since in
many cascs, however, it is crucial that certain quality criteria are met, e.g, minimizing a function of the cdges,
the array might be used more advantageously within the framework of a more complicated heuristic. Each
occupied cell may serve one of two purposes: cither it stores an edge of the convex hull (R =(A,B)) with A.B
giving the clockwise orientation, or it stores the vertices of a triangle in clockwise order. We also require that,
from left to right, the edges stored in the cells of the first kind should appear in clockwise order (fig.9). Finally
we assume the existence of a flag F to signal the first edge of cither the upper or the lower chain - see
description of CH2 in the appendix for more details. With this arrangement, Operation 2 simply involves
testing the query point against each triangle, carrying the containing triangle along with M, when detected (if
ever), otherwise reporting an oufsideface message, if no such triangle has been found. Yet simpler, Operation
3 involves pumping out the contents of each cell storing a triangle, one by one - see report operation for CH2
in the appendix.

To handle Operation 1, two cases must be considered:

1. M lics inside a triangle (e.g.. DFC in fig.9). We must rcplace R by, say, MCD, and insert the

triangles MDF and MFC into the next two right ncighbors of the current cell. This is done by
rippling to the right (fig.9,10 - case 1).

2. M lies outside the convex hull, and thus will become a vertex of the new convex hull. The
algorithm is very similar to CH2. Instcad of deicting non-convex-hull cdges, however, we must
now insert new triangles into the array. Referring to fig.13, with AB being the cdge curreatly
examined, and C.A,B occurring in clockwise order around the convex hull, we can give the new
case analysis. See exampie in fig.10 - case 2,

1) Delete AB, add AM and MBA.
2) No action.
3) Delete AB, add MBA.

4) Add MA.

Remark: 10 read after the technical part for CH2 given in the appendix. Note that, instcad of onc pussible
add in CH2 in the course of an inscrtion, we may now have a total of 3 add operations. Thus, to avoid having

»
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Figure 9: Continucd on next page .../ ...

requests overtaking one another, we should add a delay of two more systolic cycles between successive
requests, as compared to CH2. In conscquence, a delay of 9 idle cycles between requests is certainly a safe
scheduling. This margin of safety is actually overly conservative, and there is ample room for optimization,
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Figure 10: The triangulation array TRI in action.
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" The purpose of this work has been to present systolic designs for several geometric problems. Most of the
algorithms described in this paper involve two distinct types of tasks. One is concerned with the actual

computation of geometric functions, and is, in general, the casier to understand. The other involves initiating
and granting requests, which entails moving data around, i.c., adding ncw items into the array or filling holes
crcated by deletions. In general, the flow of data is irregular and not predctermined, since it is

ol rrw,vw.-u e
PR 3 ‘L T . - .
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contents-dependent. With the exception of priority queues and similar structures [GL,L], this constitutes a

major departure from most systolic arrays described in the literature, especially those for arithmetic
computations [KL.K,FK]. Instead, most of the known systolic structurces have a fixed, predetermined data
flow, usually highly regular. One major difficulty with random motion is the absence of adequate tools for
proving the correctness of the algorithms, and in particular, describing the hehavior of the data flow. There
certainly lie promising avenues of research.

In practice, most of the algorithms given here should undergo substantial revising before being
implemented, so as to take into account the opportunities for local optimization granted by the particular
applications for which the device is intended. Also, the current state of VLSI technology certainly imposes
definite constraints which are bound to influence the overall design. For example, the pin/bandwidth
limitation of today’s chips, rightly seen by many as the major bottleneck. can be partly overcome by clustering
several cells onto a single chip. Also, one highly desirable feature of a systolic array is that it is computation-
bounded and not I/0-bounded {K1]. This amounts in practice to ensure that the cells do not spend most of
the time idle, waiting for inputs to come. As it is, it is doubtful that this could be the case with the algorithms
given here, since exccuting the microcode, alone, is most likely to take longer than completing any 1/0

operation. At any rate, it is always possible to circumvent this difficulty by providing each cell with a small
random access memory (perhaps ~ 1-2K with present NMOS technology), and simulating a few tens of cells
sequentially with a single processor. This solution also has the advantage of making the handling of very large

el i

inputs possible, without requiring an excessive number of chips, hence partly overcoming the inter-chip

vy

communication bottlencck. This may scem, of course, like an overt denial of the systolic philosophy,
however, the presence of many ccils (~ 100) within the array will largely preserve the systolic nature of the
overall structure, as well as its bencfits, ' -

At the impliementation level, we urge to stay away from floating-point represcntations. whenever possible, 3
because of the incvitable complications which they entail. Note that in all the algorithms given above, only )

fixed-point additions. subtractions, and multiplications arc nceded. with the cxception of the intersection




algorithms. which involve the solution of lincar equations. In this case. division is nceded. yet can be avoided,
if rational numbers are kept as pairs of fixed-point numbers, as is common practice in lincar programming.
;’ We should also observe that the arithmetic computations involved in the algorithms are in general very simple

. and limited, most of them consisting of simple fixcd-point inner products.

Future work in the arca of systolic algorithms includes. of course, their actual implementation and
evaluation. Also, any attempt at classifying the problems that lend themselves to systolic implementations
appears very worthwhile. Finally, we must once again emphasize the current nced for an original description
language for systolic systems, as well as new tools for studying the behavior and proving the correctness of the
undcrlying algorithms.
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Anpendix
. The Algoritihm for CH1

1. The input cell

As illustrated in fig.11. the input cell has § variables attached to it.

y ——> b ¥

out

Figure 11: The input cell for CH1.

1. Variables Yin andy ¢ indicate the kind of operations to he performed. ¥;p and ¥, , can take on the
values: insert, defete, inclusion (Operation 3), report or repfold (Operation 2). The purpose of this
last distinction is for the consistency of the generic cell. Indeed, there must be two kinds of report
signals. One (report) to handle the general case, the other (repfold) to give the additional signal
that the cell receiving it is the left end of the folding strip. and therefore should pass along its own
contents o its right-hand side neighbor at the next systolic cycle.

2. x;, can hold cither the coordinates of a point to inscrt, delete. or test for inclusion, or have an
arbitrary value when y; =report. x  serves the same function: however, when yin=inc1usion.
X, Must hold both the query point M and the point R, for future sctting of the triplet T. For
simplicity, we will represent x , as (M.R,0). Similarly, when y = report, we have x mo—-(R,0.0).

3. R is a register with the coordinates of a point. When this point is deleted from the structure, R is
marked as e to signify that the cell is vacant

¢ is a symbol used systematically to denote an arbitrary value without significance to the computation. To

shorten the description of the algorithms, we assume, throughout the paper, that all the output variables

(xom.ywt.....) not cxplicitly sct to any value in the algorithm are actually sct to e.
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Ihe Algorithm

if ¥y = insert

thenifR=e¢
-then  "vacancy” Rex

else ymo—insert: Xout™Xin
ifyin=delele
then ifR=x.
then Re—e

clse yomc-delete; X o™ %in

if Y= inclusion
then  y_  —inclusion; xm«-(xm,R,O)

iy, = report
then y_ +~—repfold x__+~(R,0,0)
out out

2. The generic cell

The generic cell is simiiar to the input cell, with a few addendas. In particular, it requires two more registers
T and C, along with R. As explained above, as points pass over a generic cell in the reporr mode, the cell
maintains a triplet of points to know its own status with respect to the convex hull of the passing points, hence
the role of register T. T is a pair of points (G,H), so that the riplet is actually (R,G,H). When y, =report or
repfold. it is clear that y  , should be set to report. However, in the latter case, the cell must know that it must
send its contents at the next systolic cycle. For this reason, Y= repfold causes the cell to set its one-bit flag C
to 1, in order to remember to do so. Thus, at the next cycle, the cell will send the contents of its register R to
its right-hand side neighbor, along with a repfold signal. Note, however, that only occupied cells do fold over.

When a cell determines that either the point it is currendly storing, or the point passing by lies inside the
convex hull, it sets some appropriatc flag to avoid further computation. More preciscly, in inclusion. report, or
repfold mode. y_, is sot to thruinclusion in the first casc and thrureport in the two others, so as to notice
forthcoming cells to abstain from any unneccssary work. Similarly, if this happens with respect to a ccil which
has not started moving, T is sct to nonconv.
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if Yip = insert
thenifR=e
then “vacancy”
R.«—xh
You™ insert
xout‘-xin

else

if V= delete
thenifR= Xin
then Ree
else vy m'-delete

Xout™Xin

ifR=¢e
then “empty cell - pass along”
Your"Yin

—
xout x‘m

stop

ify,= inclusion
then Letx, = (M,A,B)
P = [F(AM.B)=F(RM,B)]
Q = [F(BM,A)=F(RM,A)]
ifPAQ
then
y m.—inclusz’on
X
f-PAQ b
then
Your™ inclusion
X —(M.AR)
ifPA-Q
then
y _  +=inclusion
Xou—(M.BR)
clse
y_ +—thruinclusion
X mllo—(M.inside)

ify,= thruinclusion
then
Your" Vin
xoul""in
if (y;, = repor)V(y;, = repfold)
v(y,, = thrureport

The Algorithm

then
Let X, = (M.A.B)
if (A,B)=(nonconv,0)
then "y = repfold”

y . «=thrureport

Xoor —(M.0.0)
if (yinalhrureporl)A(Aononconv)
then
begin

Let P = [F(AM,B)=F(R.M,B)]
Q = [F(BM,A)=F(RM,A)]

ifPAQ
then
Yo' rePOM
X __ =X,
if-PAQ
then
Y g —TEPO
Xoo —(M.A.R)
if PA-Q
then
You—"ePO
X —(MBR)
else
y . +~—thrureport
X —(M.0.0)
end

fT=¢
then
Te—(M,0)
if T=(G.0)
then
T—(GM)
it T=(G.H)
then
LetV = [F(G.R.H)=F(M.R.H)]
W = [F(H.R.G)=F(M.R.G)]

begin
it "VAW
then T~—(GM)
if VA=W
then Te—=(HM)
if ~VA-W
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then Te+—=nonconv

end

if Yo = thrureport
then
y .+ thrureport
X —(M,0,0)

if Y= repfold
then Ce1

ifC=1
then "By convention, Yin should be ¢."
Ce=0
if (T = noncony)
then .
T—{nonconv,0)
Y o "epfold
x::«-(R.T)

- S v g T Lial Sl S Sads Jead e~ -t
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Note that in repfold or report mode, the first two generic cells, and in inclusion mode, the first generic cell,
do not receive a full triplet (M,A,B) as x,, therefore the first two generic cells do not have to execute the part

of code for checking local convexity.

3. The output cell

The output cell is basically a simplificd version of the generic cell. In particular, x_ , does not need to be a
triplet when the cell is in report or inclusion mode. We still give the algorithm for the sake of completeness,

ify. =insert
mthen
if R=¢
then R""‘m
clse Your™ overflow
if Yin= delete
then
if R=x.
the;?
Ree
clse
+~— nodeletion

yout

- W S G P G

Ihe Algorithm

Xout™Xin

ify,, = inclusion
then

Letx, =(M.AB)
P = [F(AM.B)=F(R.M,B)]
Q = [F(B:M,A)=F(R M,A)]
x . +~—M
iTR=e
then y oulc—oulside
stop
if =PA=Q
then y mlto—inside
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else y 0m«—oum‘de

ify,= thruinclusion
then
Your™ inside
Xout™%in

if (y,, = report)V(y, = repfold)
V(Y = thrureport
t
Letx. =(M,A,B)
H(A,§)=(nonconv.0)
then
Yot

.........

if Y= thrureport
then

Youe™®
if Y= repfold
then
Ce1

ifC=1 then
C—0
if (Twnonconv)A(Tee)
then
y outo—hullveﬂex

ehem

begin Your™®

- Let P = (F(A.M.B)=F(R,M.B)]
X Q = [F(BM.A)=FR,M.A)]
e if R=¢

if(y, =thrureport)A(Asnoncony) X —R
then

ymo—hullvenex
x“o—M
stop
if =PA-Q
then
o ™
ymo—hullvertex
: xwo—M

-—g

end

if Ree
then
if T=s
then Te=(MJ)
if T=(G.,0)
then T~(GM)
if T=(G.H)
then Let V = (F(G.R.H)=FM.R,H)}
W = [F(H.R,G)=F(M,R.G)]

&4 begin
.- if "VAW
s then T—(G,M)
B if VA=W
o thea Te—(H,M)
"'-' if “VA=-W
- then Te—nonconv
F end
h
3
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Il. The Algorithm for CH2

For reasons which will become apparent later on. the frequency of operations initiated on the input cell
must follow the rules below:

1. After starting an operation on the input cell, wait for at least 7 idle cycles before initiating another
request.

2. No operation can be initiated before Operation 2 is completely finished. A special symbol end will
acknowiedge that fact.

There is nothing magic about these figures. It is sufficient that a general relation, discussed later on, be
satisfied, and actually, for the sake of simplicity, our rules have becn made overly conservative, Because of its
generality, we begin with a description of the generic cell.

1. The generic cell

As shown in fig.12, the generic cell can be described with 6 basic variables and 3 registers R.F,C, the former
storing one edge (A.B) of the convex hull. Testing the inclusion of a point X, = M in the convex hull involves
having y, sct to thruinclusion if non-inclusion has alrcady been determined, or inc/usion otherwise, in which
case. computing G(M,A.B) allows us to iterate on to the next cell. The variables Zips T SCTVE 2 doubdle
purpose. On the one hand. if z is a pair (A,B), the cell is vacant (R =¢) and must be filled (Re—z_). On the
other hand. once a report (Operation 2) has been initiated on the input cell, the contents of each non-vacant
cell will get to travel towards the input cell to be cventually output. To distinguish between these two kinds of
leftward motion, one bit (report) is tagged W z,,, i.e., z =(report.A,B), so that the ccll knows that it must only
pass this value along (2, ~(report.A,B)). Of course ifyh =report,  ,, is set to (report,R).

Z €——i <~ 7z,
out
y. : R.CF >y

Figure 12: The generic cefl for CH2,
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The last case to examine (Operation 1) is by far the most delicate. To decide the status of a point M in the
convex hull. .emma 2 shows that 4 possible situations should be considered. M traveling along the array from
the input to the output cell, let R =(A.B) be the edge stored at the cell currently visited. and let the variable u
be set w in if the cdge (C.A) of the previous (non-empty) cell satisfics G(M,C.AKO, or out otherwise.
Similarly, let v be G(M.A,B). Lemma 2 shows that the following actions should be taken,

1l.u = in, v>0(fig.13.1). Delete R 10 replace its contents by (A, M),
2.u = in, v<0(fig.13.2). No action.
3.u = out, v>0(fig.13.3). Delete R.

4. u = out, v<Q(fig.13.4). Insert (M,A) before R. Send R 10 next cell

M
M B B
C
A C A
1) 2)
B B
\<
7 A A
Cc : M
M
3 4)

Figure 13: Establishing the status of a new point,
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Note that if all 4 cases should arise, they would occur with the order 2.....2.1,3.....3.4.2....2 (up to circular

permutation). Since we wish to pipeline the updates, it is very important that as an insert-M operation travels
left-to-right, the insert signal, at any time, lcaves behind the gxact clockwise description of the boundary as it
should be after inscrting M. For this reason, we must ensure that if the 4 cases should arise, they do so in the
order:

2..213...34.2..2
This problem comes from the fact that the variable u cannot be computed for the first cell, since it involves
knowledge of the last occupied cell in the array. To overcome this difficulty, we adopt a slightly different
representation of a convex polygon, which involves partitioning the boundary into two chains of consecutive
edges. One, the upper chain, consists of the upper edges of the polygon, i.e., edges with increasing X-
coordinates in clockwise order: the other, the Jower chain, consists of the lower edges, defined as the edges
pointing to the left (fig.14).

>
0 X

Figure 14: The partition of a convex polygon.

We now require that from left to right, the array CH2 should store first the edges of the upper chain, then
the edges of the lower chain. both in clockwise order. Of course. we must assume the presence of a flag
register F in cach cell, which takes on the value firstup (resp. firstlow), if the cell is currently storing the first

edge of the upper (resp. lower) chain. Otherwise, F is sct to e. The flag plays the role of u for the two edges in

the array whose ncighbors, in counterclockwisce order, are conceptually two infinite vertical rays.

bbb

Situations 1 and 2 are straightforward to handle, unlike Situation 3 which creates "holes™ in the array, and
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situation ¢ which adds one extra edge. In the latter case, the cdge R and the flag F will bounce their contents
on to the next cell, which will store them in its registers, and send the former contents of these registers to its

neighbor. This process will iterate unti! the last cell (R = end) has been reached. thus adding one to the overail 4
cell occupancy. While a cell is busy sending its contents to its neighbor, it must hold up the insert request to 1
forward it at the next step. To do so, it uses the third register C. To handle Sitation 3, i.c., to fill holes, we
require that at the cnd of the computation, each cell checks whether it is vacant (R = ¢), in which casc it issues 4

a hole signal to its right-hand neighbor (ymhhole), provided that v out has not already been set to another
value (c.g. a query/update signal). Upon receiving a hole signal (y, = hole). the cell must empty its register T ]
onto its left-hand ncighbor (Zgy—R)- One major difficulty is that, with a naive implementation, a right- )
moving query/updatc may miss somc lcfi-moving edges. To circumvent this pitfall, we reserve the odd ]
systolic cycles for all leftward transfers, and the even cycles for the remaining computations.

The Algorithm

We assume that, during even cycles. all I/0 variables not explicitly assigned to any value are set to & - note
" that allowing this to happen during odd cycles would have disastrous cffects,

Odd systolic cycles
if (y;, tl'=e!l:ole)/\(z‘m =g)
z,,—RF)
R—~Fe—¢
Even systolic cycles J
ifz. =e Cee :
“then 3
if 2, =(repor1,A,B) if Yin = insert -]
then z -z then “
else (l{.'lt-')«-zh begin n
if(R=¢e)vV(R=end)
if Coe then
then Your™ insert
You™ insert Xt %in b
xﬂlt’_C clse -
3
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Let X0 =(M.u.w), R=(A,B),
and v=G(M,A.B)

if F=firstup
then
if M1<A1
then ue—out
else ue—in

if F =firstlow
then
if M1>A1
then ue—out
else u—in

if (u=in)A(v>0)
then
"AM is on convex hull”
R—(AM)
Y. —insert
x::o—(M.om.c)

i#f (u=in) A(v<0)
then
Y. —insert
x::'-(M.z‘n.c)

if (u=our)A(v>0)
M .
"Delete R,F"
y_  —insert
if?\'v = firstup)V(F = firstup)
thea

x lc—(M,oul.ﬁrsmp)
if (w= firstlow)V (F = firstlow)
thes
xmo—(M,oul‘ﬁrsllow)
Re=Fe=¢

if (u=our)A(v<0)
then
"MA and AB are
on convex hull”
You —add
x:o-R
R~—(M.A)
Ce—=(M.in,e)
if (w = firstup)Vv(w = firstiow)
then
Foew

end

ify. =add
lrlthen
Y add
X e=(R,F)

(lti'_)o—xm

if ¥iq = report
then
if (Rwe)A(Rwend)
then
z omo—(repon,R)
You ™ "eport
if ¥iq = inclusion
then

if (R=¢)V(R=end)

then
Your™ inclusion
X_ =X
lse out  in
LetR=(A,B)
X o™i
if G(M.A,B)XD
then ymo—inclusion
else ymo—lhruinclusion
end

if Yn= thruinclusion
then
Your™ thruinclusion
Xout™%in
if (R ;ecz/\(y out=%)

ymo—hole
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2. The input and output cells

We nced not give the details of the algorithms for these cells, since they are merely simplified versions of
the generic cell. Before computation starts, we assume the presence of R = end in the input cell. For this cell,
the odd cycles will be idle, and except for a special treatment for the first three points cmcrihg the array, most
of the behavior of this cell is identical to that of the generic cell. As for the output cell. its most notable feature
is to detect and report possible overflows, as well as outputting an inclusion message if Yin = inclusion, and a

non-inclusion message if y, | = thruinclusion.

3. Correctness of the algorithm for CH2

To begin with, we should note that along with an insert-M request, two flags (u and w) should be tagged to
M. The variable u is, as shown above, the status in or out of M with respect to the previous cell, and w is a flag
set to firstup (resp. firstlow) if the next edge crcated, MA. happens to be the first of the upper (resp. lower)
chain. This information is needed when the first edges are deleted by repeated occurrences of Sicuation 3, and
w is thus the only way to acknowledge the first new edge that it is indeed the first edge of a chain. It is
important to realize that filling holes with a rightward motion of edges is meant only to improve the
performance of the array, i.e., put the limitation on the size of the convex hull rather than on the number of
operations which can be performed. For this reason, we may first show the correctness of the aigorithm when
all the instructions related to that hole-filling job are dropped. This involves ignoring odd cycles as well as the
last if-statement of the main algorithm. The only point remaining to be checked is that y, , is always set only
once.

In order to do so, we may start with a few hclpful observations. Let us call an even phase the conjunction of
an even followed by an odd cycle. The rules on operations rate spccified above impose a dclay of at most 4
even phases between two consecutive opcrations. However, an insert operation may entail the loss of one
phase, caused by the possible (unique) setting of C, thus reducing the above delay to 3. On the contrary, a cell
may issuc a hole signal (y mo-hole) possibly at every even phase, and similarly a cell is in a position to
respond 1o a hole message at every odd phase (zwlo—(R.F)). From these facts, we derive in particular that
whenever C=e, we also have Yp=6 form which it is casy to sce that there is ncver any conflict in setting y out’
Now including the holc-filling instructions. we only have to show that there is no conflict in sctting the
register R. Morc preciscly, we must prove that whencver z,,=(A.B.F)e, we have R =e. This comes from the
fact that zm=(A.B.F) if and only if, at the previous odd cycle., y out had the value hole. This. in turn, implies
that at the end of the previous even cycle, we had R =e. Sincc. in addition, R can only be sct to € (if it is ever)

at odd cycles, our proof is complete.

The last item to verify is what preciscly motivated the distinction between odd and even cycles: the
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assurancc that all right-moving queries or updates encounter all the edges of the array. If 7, =(A.B,F)ue, the
first action taken by the cell at an even cycle is to set (R,F) to z,,. so that a inclusion or insert operation at that
cycle will effectively deal with the just-left-moved edge. On the other hand. since the edge leaves the cell only
underay, = hole situation, the cell will not have to handle any query/update at the next even cycle, so it may
leave the cell without missing any matching, which proves our claim. Our final investigation concerns the
storage efficiency of the array. We have claimed that no overflow will ever occur, as long as the number of
vertices in the convex huil, at any time, does not exceed N/2. We must now support this claim.

The above assumption clearly implies that no more than N/2 cells are occupicd (R=¢) at any time, since
inserting a vertex involves, first, deleting old edges, then adding the new oncs. Trouble may arisc, however, if
edges tend to cluster towards the output cell. To dispel that worry, we introduce the concept of leading front,
defined as the rightmost cluster of occupied cells, i.¢., the rightmost group of cells without R=e. A leading
front can be characterized by the position H of the first cell, measured as its distancc to the input cell, along
with the length L of the cell. To prove the absence of leading fronts near the output cell, hence the absence of
overflow, it clearly suffices to establish the following result.

Lemma 3: H+2L ¢ N

Proof: To look at the evolution of a leading front, suppose that the front (H,L-1) just had one
cell added to it as the result of an insertion. yielding a front (H.L). From the rules, it follows that
during the next 7 cycles, no more cell can be added to the front. However, a hole signal will
necessarily be transmitted to the leftmost cell of the front during the first two even cycles,
therefore this cell will be detached from the front by the second odd cycle, at the latest. For the
same reason, a hole signal will reach the new leftmost cell of the front by the 4th even cycle at the
latest, thercfore this cell will also detach itself before the 7 cycles are elapsed, thus leaving a front
(H+2,L) in the worst case, which completes the proof. O

It is easy to generalize the rules specified above, which may be useful for tuning the algorithms according to
the average distribution of requests. Let A be the number of cells in the systolic array, and let « be the ratio
speed of head/ speed of tail. If we wish to allow up to N convex hull vertices in the array, at any time, we must
have the relation aA<A-N, hence agl-N/A, satisfied. On the other hand, if a (resp. b) is the delay measured
in number of phascs, imposed between consecutive insert (resp. inclusion) operations, the following relation
must hold.

l/a g a(1-(1/7a+1/b))
that is,
17a ¢ (1-N/7AX(1<(1/a+1/b)).
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HI. The Algorithm for INT2

We give only the algorithm for the insert operation, the others being handled in a way strictly similar to
CH2. When the line L delimiting the half-plane H to be inserted intersects the current polygon I, the
intersection consists (in general) of a ségmem VW, which must be added to the array. To do so, it suffices to
tag the first intersection point encountered, V or W, along with the half-plane H, as it travels left-to-right, in
order to insert VW into the array as soon as the other end-point can be computed (case 1 or 4). As usual, note
the presence of the register C to buffer out the delay caused by an insertion. See fig.15.

B , LY
B
D
@ . A
A
1) 2)
A B A D
/ / ’
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Figure 15: Thc various cascs for INT2,
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ify in = insert
then

if (R=e)V(R=end)

then

Y g insert

xout'- xin

else

LetR=(A.B), X = (H,u)
Switch to appropriate case (fig.15).

sase 1
Re~(A.D)
if une
then
Your—add
X omv—(D,u)
C~—(H,e)
else
Yy, +insert
Xoor —(H,D)

yout'_yin
xout"’xin
case 3
Ree
yout"'yin
xout.--xin
case 4
if uwe
then
Y o —add
X0 —(D,B)
Re(u,D)
C—(H,e)
else
R~(D,B)
You +—insert
xwto-(H,D)
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